PERFIL INVESTIGADOR

Dr. Gómez Aguilar, José Francisco

Miembro de la División Ingeniería de Operación y Proceso del Consejo Académico UV CNCI

Estudié la Licenciatura y Maestría en Ingeniería Eléctrica en la Universidad de Guanajuato en 2005 y 2007, respectivamente, obtuve el doctorado en Física por la División de Ciencia e Ingenierías de la Universidad de Guanajuato en 2012. Soy miembro del Consejo Nacional de Ciencia y Tecnología y del registro de evaluadores en Ingeniería e Industria (CONACYT-RCEA MÉXICO). Actualmente soy profesor investigador titular en el Departamento de Ingeniería Electrónica del Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Cuernavaca, Mor., México. Mis intereses científicos son el cálculo fraccionario, procesamiento de imágenes y señales, control, electroquímica, bioelectromagnetismo y aplicaciones biomédicas. Me he desempeñado como editor invitado de algunos números especiales y también como revisor de más de 40 revistas acreditadas internacionales. He presentado y participado en más de 10 congresos internacionales, además soy autor de más de 350 artículos publicados en revistas internacionales con estricta revisión.

En el 2018 me incorporé como tutor investigador a la Universidad Virtual CNCI, formando parte del Consejo Académico en la División de Ingeniería de Operación y Proceso.

Contribuciones

  • Wave propagation in an elastic coaxial hollow cylinder when exposed to thermal heating and external load
  • A initial–boundary value problem of a biofluid influenced by a magnetic field using a fractional differential operator with non-singular kernel
  • Mathematical modeling of coronavirus disease COVID-19 dynamics using CF and ABC non-singular fractional derivatives
  • The Use of a Time-Frequency Transform for the Analysis of Electrochemical Noise for Corrosion Estimation
  • Fractional viscoelastic models with novel variableand constant order fractional derivative operators
  • Travelling waves solution for fractional-order biological population model
  • Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities
  • Diverse Soliton Structures for Fractional NonlinearSchrodinger Equation, KdV Equation and WBBMEquation Adopting a New Technique
  • Novel Optical Solitons to the Perturbed Gerdjikov-Ivanov Equation Via Collective Variables
  • Exploring the Cross-Correlation as a Means for Detecting Digital Watermarks and Its Reformulation Into the Fractional Calculus Framework
  • Fractional derivatives with no-index law property: Application to chaos and statistics
  • Numerical solutions of Fourier's law involving fractional derivatives with bi-order
  • Modelling the oxygen diffusion eqyuation within the scope of fractional calulus
  • Fractional derivatives with no-index law property: Application to chaos and statistics
  • A Simple Spectral Observer
  • Coupled reaction-diffusion waves in a chemical system viafractional derivatives in Liouville-Caputo sense
  • Optical soliton solutions of the Ginzburg-Landau equation withconformable derivative and Kerr law nonlinearity
  • Analytical solution of the time fractional diffusion equationand fractional convection-diffusion equation
  • Homogeneity-PMU-Based Method for Detection and Classification of Power Quality Disturbances
  • Electrical circuits RC and RL involving fractional operators with bi-order
  • Irving–Mullineux oscillator via fractional derivatives with Mittag-Leffler kernel
  • Control Scheme Formulation for the Production of Hydrogen on Demand to Feed an Internal Combustion Engine
  • Control of the Air Supply Subsystem in a PEMFC with Balance of Plant Simulation
  • Chaos in a Cancer Model via Fractional Derivatives with Exponential Decay and Mittag-Leffler Law
  • Bateman–Feshbach Tikochinsky and Caldirola–Kanai Oscillators with New Fractional Differentiation
  • Fractional Derivatives with the Power-Law and the Mittag–Leffler Kernel Applied to the Nonlinear Baggs–Freedman Model
  • Chaotic Attractors with Fractional Conformable Derivatives in the Liouville–Caputo Sense and Its Dynamical Behaviors
  • A simple Spectral Observer
  • A New Methodology for Tracking and Instantaneous Characterization of Voltage Variations
  • Analytical and numerical solutions of electrical circuits described by fractional derivatives
  • Analytical solutions for the fractional diffusion-advection equation describing super-diffusion
  • Analytical Solutions of the Electrical RLC Circuit via Liouville–Caputo Operators with Local and Non-Local Kernels
  • Behavior characteristics of a cap-resistor, memcapacitor, and a memristor from the response obtained of RC and RL electrical circuits described by fractional differential equations
  • Equivalent Circuits Applied in Electrochemical Impedance Spectroscopy and Fractional Derivatives with and without Singular Kernel
  • Experimental evaluation of viscous damping coefficient in the fractional underdamped oscillator
  • RLC electrical circuit of non-integer order
  • Fractional electromagnetic waves
  • Dynamics of a charged particle in a ramp magnetic field
  • Master-Slave Synchronization of Robot Manipulators Driven by Induction Motors
  • Nonlocal Transport Processes and the Fractional Cattaneo-Vernotte Equation
  • On the Possibility of the Jerk Derivative in Electrical Circuits
  • Series Solution for the Time-Fractional Coupled mKdV Equation Using the Homotopy Analysis Method
  • Triple pendulum model involving fractional derivatives with different kernels
  • Modeling of a Mass-Spring-Damper System by Fractional Derivatives with and without a Singular Kernel
  • Fractional Transmission Line with Losses
  • Space-Time Fractional Diffusion-Advection Equation with Caputo Derivative
  • Analysis on the time and frequency domain for the RC electric circuit of fractional order
  • RLC electrical circuit of non-integer order
  • Experimental Study on the Performance of Controllers for the Hydrogen Gas Production Demanded by an Internal Combustion Engine

Calendario

Ask ChatGPT
Set ChatGPT API key
Find your Secret API key in your ChatGPT User settings and paste it here to connect ChatGPT with your Tutor LMS website.